The generator matrix 1 0 0 1 1 1 X 1 1 0 0 X 1 1 1 0 1 1 1 0 X 1 1 1 1 0 0 X 0 1 1 X 1 1 0 X 1 X 1 1 1 1 1 1 0 1 1 X 1 1 X 1 1 X 0 X 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 X X 1 1 1 X+1 0 1 1 X 1 1 0 0 0 1 X+1 1 1 X 0 X+1 X+1 X X 0 X 1 X+1 1 1 1 1 X+1 X 0 1 0 X+1 1 1 X+1 1 1 X 0 1 1 X 1 X X+1 X 1 X+1 0 0 1 1 1 0 1 X X+1 1 0 1 X+1 X 0 X+1 X+1 1 X 0 1 0 1 X+1 X X 1 1 1 X+1 0 1 X X+1 1 X 1 X+1 0 0 X X 0 1 X 0 0 1 0 X 1 X 0 0 X+1 0 X X+1 X+1 X+1 1 1 0 0 0 0 X 0 0 0 0 0 0 0 0 X X X X 0 0 0 X 0 X X X X X X 0 X X 0 X X 0 X 0 X X X X 0 0 0 0 0 X X X 0 0 X X X X X X X X X 0 0 X X 0 0 0 0 X 0 0 X X X X X X X X 0 X 0 0 X X 0 X X X 0 X 0 X 0 X 0 0 X X X 0 0 0 0 X 0 0 X X X X X X X X X X 0 X X X X X X X 0 0 0 0 0 0 0 X 0 0 0 X X X X X X X X 0 0 X 0 X 0 0 0 0 0 X X X X X 0 X 0 0 X 0 0 X 0 X X X 0 0 X X 0 X 0 0 X 0 0 0 X X 0 X 0 0 0 generates a code of length 63 over Z2[X]/(X^2) who´s minimum homogenous weight is 58. Homogenous weight enumerator: w(x)=1x^0+109x^58+100x^60+96x^62+68x^64+51x^66+24x^68+15x^70+20x^72+8x^74+8x^76+9x^78+3x^80 The gray image is a linear code over GF(2) with n=126, k=9 and d=58. This code was found by Heurico 1.16 in 0.625 seconds.